

Thyratron Thermostat

"eThermostat"

- User Manual -

INDEX

1.	Intr	oduction	3
	1.1.	Product Features Summary	3
2.	Elec	ctronic Thermostat	4
	2.1.	Defrost & Save Energy Mode	4
	2.2.	Hardware	4
	2.3.	Connection Diagram	5
	2.4.	Voltage And Frequency Supervisor	5
	2.5.	Ambient Temperature Monitoring	5
	2.6.	Intelligent Time Delay	5
	2.7.	Reconnecting Voltage Hysteresis	6
	2.8.	LED Indication	6
3.	Para	ameters	7
	3.1.	Electrical Limits	8
	3.2.	Operational mode parameters	9
	3.3.	Energy Saving mode	11
	3.4.	Defrost mode	12
	3.5.	Port Control	13
	3.5.1	Port A control	13
	3.5.2	Port B control	13
	3.6.	Synchronize Fan & Compressor control	13
4.	Acc	essories	14
	4.1.	Door Sensor	14
	4.2.	Temperature Switch	15
	4.3.	Light Sensor	15
	4.4.	Temperature Knob	16
	4.5.	External LEDs Indicator	17
	4.6.	Wireless module	18
5.	Tec	hnical Specifications	19
6.	Sto	rage	19
7.	Арр	provals	20

1. Introduction

Thyratron develops and produces innovative and cost efficient power and control solutions for appliance OEMs worldwide. With product placements over the past 25 years in some of the harshest environments, Thyratron has acquired the know how to deliver reliable quality products.

The eThermostat is a device that controls temperature of refrigeration appliances. At the same time, it supervises voltage and frequency of the power supply to protect the compressor. (Appliances falling into EN/IEC 60335-2-89 scope).

1.1. Product Features Summary

- Electronic Thermostat with Defrost & Energy Save* mode. ^{2.1}
- Voltage and Frequency supervisor. ^{2.3}
- Ambient Temperature monitoring. ^{2.5}
- Intelligent time delay. 2.6
- Reconnecting voltage hysteresis. ^{2.7}
- Parameter transfer. 3
- Configurable parameter list in order to optimize the performance of the refrigerator. Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν βρέθηκε.

^{*}Energy Save mode can be activated with optional door sensor

2. ELECTRONIC THERMOSTAT

2.1. Defrost & Save Energy Mode

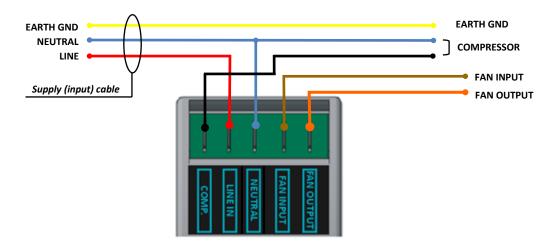
The Thyratron thermostat is capable of controlling - depending on parameter settings - the refrigerator's temperature from -28oC to +50oC, with a programmable differential. The thermostat achieves that by controlling the compressor and evaporator fan motor by monitoring inputs and using algorithms to achieve functions like defrost and Energy Saving. The parameters of these functions are adjustable by the OEM to create the ideal profile for each cooler model.

A further Feature of the Thyratron Thermostat is the programmable "Limp Home" mode. In the unlikely event a cabinet temperature sensor failure is detected; the cooler will cycle on pre-programmed compressor on/off cycles to maintain the cooler operational.

2.2. Hardware

Fan Out
Fan In
NEUTRAL
LINE IN
COMPRESSOR

Remote Status Indicators (LEDs) / Programming Serial Port 9600/8/N/1	Port B
Temperature Sensor 2 / Selection Switch / Door sensor/ Temperature Adjustment)	Port A
Temperature Sensor 1	Sensor



2.3. Connection Diagram

Check the insulation of the supply (input) cable according to local regulations before connecting to the ECU.

PPS WAVE is intended to be used with the protection of a fuse gG, type B, IEC60269-3-1.

Confirm compatibility with connection terminals as well as insulation. The connectors are Fast On terminals 6.3x0.8mm.

2.4. Voltage And Frequency Supervisor

Thermostat monitors voltage and frequency of main power and cuts off the output to the compressor and Fan Motor when the input mains voltage and/or frequency are out of limits. These values are programmable and at the parameter list you can find the limits and default values.

2.5. Ambient Temperature Monitoring

Thermostat monitors the temperature of its surrounding area and in case it detects a value higher than the upper limit value or a temperature rise pace greater than 15°C per 16 minutes it cuts out the output to protect the cooler and itself. Thermostat will reconnect the output when the temperature of the surrounding areas falls below 50°C and the rate of temperature rise becomes lower than 15°C per 16 minutes.

TEMPERATURE LIMIT	MAX TEMPERATURE RISING PACE	
+85 °C	DT > 15 °C / 16 min	

2.6. Intelligent Time Delay

Intelligent time delay provide a period of time to allow balance of the

pressures of the refrigeration circuit between cycles, preventing startup under high pressure thus extending the lifetime of the compressor.

A randomized small time window will prevent simultaneous startup of multiple coolers at a single location to protect from sudden voltage drops and potential power supply overload.

2.7. Reconnecting Voltage Hysteresis

If the Thermostat reconnects after a cut off and the line voltage fluctuates near the Thermostat's input lower limit voltage, it will utilize a small a voltage window to avoid continuous cutoffs triggered from the connecting voltage drop that may occur.

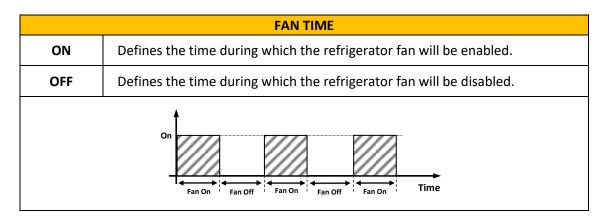
2.8. LED Indication

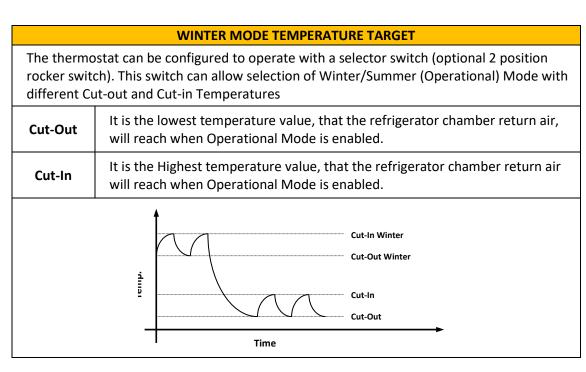
EVENT	LED
Time delay	Blink Slow
Frequency out of limits	Blink Fast
Slow : 1 Hz	
Fast : 2 Hz	

3. PARAMETERS

The eThermostat is supplied with predetermined default settings. Parameter sets can be modified and transferred to the device utilizing a laptop with the necessary software and programming dongle supplied by Thyratron.

Demonstrate to bloom			Units	<u>Value</u>		
Pa	Parameter table			Default	Min	Max
	Valtana	Low Limit	VAC	180	160	250
Electrical	Voltage	High Limit	VAC	245	160	250
Limits	F	Minimum	Hz	47	45	55
	Frequency	Maximum	Hz	53	45	55
	Normal Mode	Cut-Out	°C	2	-28	50
	Temperature target	Cut-in	°C	4	-28	50
	Fan time	ON	min	3	1	120
Operational	ran time	OFF	min	3	1	120
Operational mode	Winter Mode	Cut-Out	°C	6	-28	50
mode	Temperature target	Cut-in	°C	8	-28	50
	Limp Mode -	ON	min	3	1	120
	Compressor time	OFF	min	12	1	120
	Delay after interrupt		min	3	1	10
	Energy Saving mode switch	Disabled=0	, Enabled=1	1	0	1
	Temperature target	Cut-out	°C	10	-28	50
		Cut-In	°C	12	-28	50
Energy Saving mode	Time to enable Energy Saving mode		Hours	4	1	24
	Time duration of Energy saving mode		Hours	6	1	24
	Fan time	ON	min	2	1	120
		OFF	min	2	1	120
	Defrost mode switch	Disabled=0	, Enabled=1	1	0	1
	End temperature target		°C	15	-28	50
Defrost	Time to enable Defrost mode		Hours	2	1	24
mode	Maximum defrost time		min	20	1	120
		ON	min	1	1	120
	Fan time	OFF	min	1	1	120
Port Control	Port A control	Door sensor = 0, Temp switch = 1, Temperature Knob = 2, Light Sensor = 3, None = 4		0	0	3
Lead Synchronize Fan & Comp.		Sec	10	0	10	


3.1. Electrical Limits

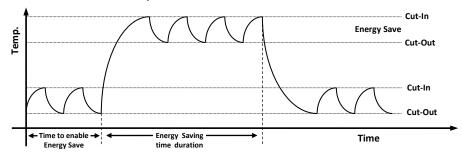

VOLTAGE				
High Limit	It is the <u>highest operational voltage</u> before the device will cut out its output.			
Low Limit	It is the <u>lowest operational voltage</u> before the device will cut out its output. At reconnect conditions, must take into account the voltage window hysteresis (~7VAC).			
\triangle	The "Voltage Low Limit" must be less than "Voltage High Limit" at all times.			

	FREQUENCY				
Max It is the <u>highest operational frequency</u> before the device will cut out its output.					
Min It is the <u>lowest operational frequency</u> before the device will cut out its output.					
A	The "Minimum Frequency" must be less than "Maximum Frequency" at all times.				

3.2. Operational mode parameters

	TEMPERATURE TARGET			
Cut-in (Set Point + Differential)	It is the <u>Highest temperature value</u> , that the refrigerator chamber return air will reach when Operational Mode is enabled.			
Cut-out (Set Point)	It is the <u>lowest temperature value</u> , that the refrigerator chamber return air, will reach when Operational Mode is enabled.			
\triangle	The 'Temperature Cut-out' and "Temperature Cut-in" must be less than "Energy Save Cut –out" and "Energy Saving cut-in" accordingly, at all times.			
Cut-In Cut-Out Time				

LIMP HOME - COMPRESSOR TIME				
Time ON	It is time period the compressor will be enabled in order for the cooler to maintain low temperature, in the unlikely event of a temperature sensor malfunction.			
Time OFF	It is the time period the compressor will be disabled in order for the cooler temperature to rise to a slightly higher temperature to enable cycling, in the unlikely event of a sensor malfunction.			


DELAY AFTER INTERRUPT

It is the time when the thermostat won't have enabled output despite being turned on. In this state, the LED will blink on and off.

3.3. Energy Saving mode

Energy Saving mode allows the cooler to reach a higher set point and cut in temperature to decrease energy consumption during times when the cooler is idle and not required to work in fully operational status (weekends, holidays, night times, etc).

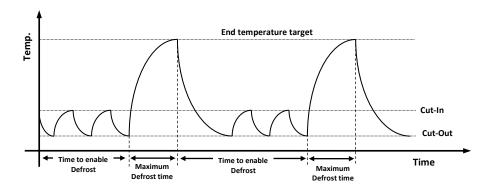
For this mode to be available, a door sensor must be installed. Energy Saving Mode is activated after a certain time of door inactivity. In case the cooler door opens during the Energy Saving Mode then automatically the mode will be terminated no matter how much time has elapsed.

ENERGY SAVING MODE SWITCH				
Disable:	0	Enable:	1	

TEMPERATURE TARGET				
Cut-out It is the lowest temperature value the refrigerator chamber will when Energy Saving Mode is enabled.				
Cut in	It is the highest temperature value the refrigerator chamber will reach when Energy Saving Mode is enabled.			

TIME TO ENABLE ENERGY SAVING MODE

It is the time period that has to elapsed without any door opening, in order for the Energy Saving Mode to be enabled.


TIME DURATION OF ENERGY SAVING MODE

It is the maximum time period the Energy Saving Mode will be enabled, if no door opening occurs.

FAN TIME				
ON	Defines the time during which the refrigerator fan will be enabled.			
OFF	Defines the time during which the refrigerator fan will be disabled.			

3.4. Defrost mode

"Defrost mode" is a time based defrost cycle to clear the cooler's evaporator from any ice accumulation especially in humid locations. The time period that has to elapse for Defrost mode to start is configurable as well as the fan ON-OFF time

DEFROST MODE SWITCH				
Disable:	0	Enable:	1	

END TEMPERATURE TARGET

It is the actual temperature value that once reached the Defrost Mode will be disabled.

TIME TO ENABLE DEFROST MODE

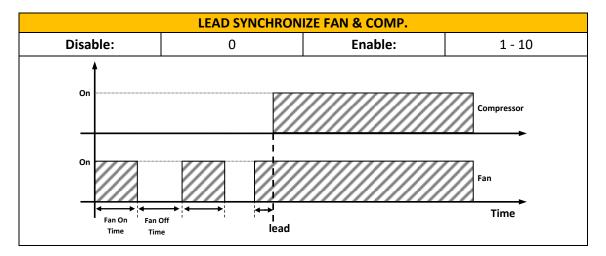
It is the maximum continuous time of operation (Operational Mode or Energy Saving Mode) until Defrost Mode is enabled.

MAXIMUM DEFROST TIME

It is the maximum continuous time the Defrost Mode could be enabled if no interference happens, like a door opening.

FAN TIME			
ON	Defines the time during which the refrigerator fan will be enabled.		
OFF	Defines the time during which the refrigerator fan will be disabled.		

3.5. Port Control


3.5.1. Port A control

Defines the if the input will be utilized as a door sensor or a temperature switch.

3.5.2. Port B control

3.6. Synchronize Fan & Compressor control

This control, enables the fan operation during the compressor operation, moreover, the fan starts the operation before the compressor in a time that is specified by the lead parameter.

4. Accessories

Port A of the eThermostat is programmable by the user via computer or mobile app, so it can be connected to it a variety of sensors. These sensors and their function are summarized in the table 1.

Port B can be used for serial communication or it can be used in order to drive external Leds. The eThermostat automatically recognizes which peripheral is connected in the Port B checking the Port every 10 seconds.

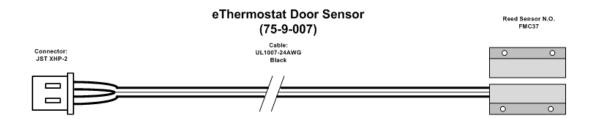

Options	Function		
Door Sensor	Detects if the door is open or closed		
Switch	Switching between two different cooling operation modes		
Light Sensor	Detects brightness so can be programmed for S.E mode at night		
Temperature Knob	Analog adjustment of the target Temperature		

Table 1 Port A Options and their function

Options	Function
External Leds	
PC Programmer	
Wireless Progr.	

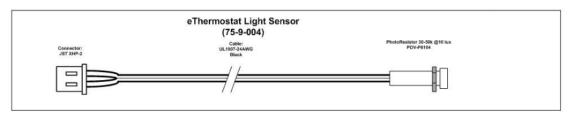
Table 2 Port B Options and their function

4.1. Door Sensor

Door Sensor can be connected to Port A of the eThermostat. Also in the Parameters, field Port A must be programmed to the specified value.

With the door Sensor detected when the door is open or closed. The status of the door affects the operation of the fan and the Energy Saving mode. By using door sensor records the door openings per hour in the last 24 hours and can be presented graphically by using the option of Wireless module and Android App.

4.2. Temperature Switch

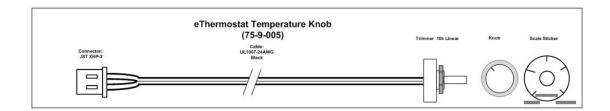

Temperature Switch option can be connected to Port A of the eThermostat. Also in the Parameters, field Port A must be programmed to the specified value.

By using the switch you can select the cut in and cut out temperature between two sets of target temperature that shown in Table 3. When the switch is in position I, the Winter mode set of parameters is selected otherwise Normal Mode is selected.

Parameter table		Haita	<u>Value</u>			
		Units	Default	Min	Max	
	Normal Mode	Cut-Out	°C	2	-28	50
Operational	Temperature Target	Cut-in	°C	4	-28	50
mode	Winter Mode	Cut-Out	°C	6	-28	50
	Temperature Target Cut-ii	Cut-in	°C	8	-28	50

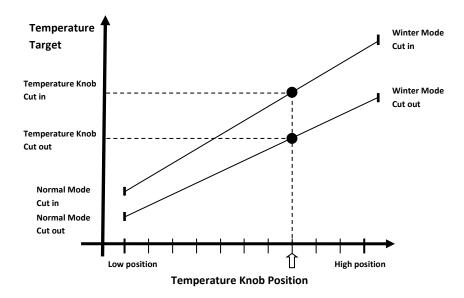
Table 3 Normal and Winder Mode target temperatures

4.3. Light Sensor

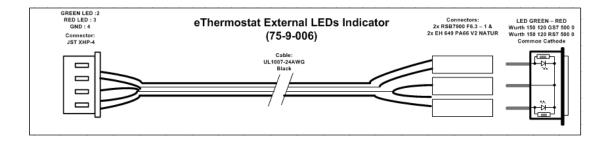

The Light Sensor Option can be connected to the Port A of the eThermostat. Also in the Parameters, the field Port A must be programmed to the specified value.

The Light Sensor can detect if there is lighting or not. If the brightness falls below of a threshold, the eThermostat operates in Energy Saving Mode set of temperature targets. Otherwise it operates in Normal Mode temperature target shown in Table 4.

Parameter table		Linita	<u>Value</u>			
		Units	Default	Min	Max	
	Normal Mode	Cut-Out	°C	2	-28	50
Operational mode	Temperature Target	Cut-in	°C	4	-28	50
	Energy Saving M. Cut-Out Temperature Target Cut-in	Cut-Out	°C	10	-28	50
		Cut-in	°C	10	-28	50


Table 4 Normal and Energy Saving Mode target temperatures

4.4. Temperature Knob



The Temperature Knob Option can be connected to Port A of the eThermostat. Also in the Parameters, field Port A must be programmed to the specified value.

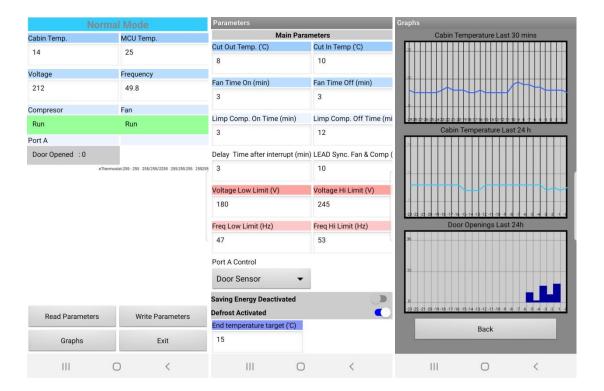
With the Temperature Knob, the cut in and cut out target temperatures can be adjusted between Normal and Winter Mode temperature targets as shown in the graph below.

4.5. External LEDs Indicator

The External Led Indicator Option can be connected to the Port B of the eThermostat. After the connection the eThermostat automatically recognizes the options and changes their own operation.

The external LEDs are showing the operation status of the eThermostat. They can light up (Green - Orange - Red)continuously or blinking with frequency 1Hz or 2Hz. Table 5 shows the meaning of the LEDs lighting:

	Indicator Color		
Compressor ON	on		
Comp. Off due to Thermostat		on	
Comp. Off due to other Limits			on
Start Up Delay due to Thermostat Limits	1Hz		
Defrost Mode		1Hz	
Start Up Delay due to Voltage Limits			1Hz
Start Up Delay at Energy Saving Mode	2Hz		
Frequency Out Of Limits		2Hz	
Ambient Temperature Out Of Limits			2 Hz
Limp Mode Activated	Toggle 1Hz		Toggle 1Hz


Table 5 External LEDs indication status

4.6. Wireless module

The Wireless Module Option can be connected to Port B of the eThermostat. These options are recognized automatically by the eThermostat.

Using these options can activate a connection between eThermostat and an Android Device by using the Bluetooth Connection of the Android Device.

At the side of the Android Device must be installed the "eThermostat Tools" application. By using this app you can see Live Data, Captured Data, Read and Change the Parameters of the eThetmostat.

5. TECHNICAL SPECIFICATIONS

	THERMOSTA	AT SPECIFICATIONS		
	Nominal Voltage	230 VAC		
	Operation Voltage Bandwidth	160 - 250 VAC		
	Ambient Temperature	Tmin -40°C Tmax+50°C		
Operating conditions	Humidity	0 - 85 %RH		
Conditions	Compressor Output Current Capacity	10(6)A		
	Fan Motor Output Current	3(3)A 250 VAC		
	Capacity	3(3)A 30VDC		
Thermal pro	tection	- Temperature limits +85 °C		
		- Temperature differential 15 °C / 16 min		
Plastic Housing		UL94 V-0 Flame Retardant		
Relay Life tii	ma	Compressor Relay lifetime cycles > 100.000		
Nelay Life til	iie	Fan Relay lifetime cycles > 50.000		
Pollution D	egree	III (3)		
СТІ		> 250		
Insulation (between Main Power and Accessible Parts)	Reinforced		
Power Connections		6.3mm x 0.8mm flat, terminal		
Total weight (g)		0.155 kg		
Accuracy	NTC Sensor	± 0.5 °C (Operating Temp. Range: -28°C to +50°C)		
,	eThermostat	± 0.5 °C		

6. STORAGE

Should not be stored in high temperature or high humidity condition. Usage, beyond the specified shelf life could compromise product long term reliability. The suitable conditions are +5 to $+35^{\circ}$ C and less than 75%RH in Relative Humidity indoor. Shelf Life, 2 years.

7. APPROVALS

	Approvals	
CB - Test Certificate	IEC 60730-1 : 2013 + A1 IEC 60730 - 2 - 9 : 2015 + A1 : 2018	The controls pass the GW750 test according IEC 60335-1:2010 clause 30.2.3.2.
CE0413 - Declaration of Conformity - Verification of Conformity	EN 60730 - 1 : 2016 EN IEC 60730 - 2 - 9 : 2019	Relays separately tested as sealed device according to IEC / EN 60079-15:2010 clause 22.5.
RoHS III (EU Directive 2015/86	3)	,

Further Information

Support: rnd@thyratron.gr
Sales: sales@thyratron.gr
Site: www.thyratron.gr

Follow us at <u>linked in</u>, <u>Facebook</u>

Address: KydoniesVasiliko, Erymanthos, Achaia, GR25008, GREECE

Tel: +30 26940 61868 Fax: +30 26940 62001